

Site LCR – Ecoparc Rhénan

Site n° # - LCR - Ecoparc Rhénan

Adresse : Ecoparc Rhénan **Commune** : Strasbourg

Energie retenue : Photovoltaïque en toiture

Synthèse

Récapitulatif du projet					
Surface disponible 3 456 m ²					
Puissance installée	2000 kWc				
Production annuelle	1 820 MWh				
Investissement*	3 300 000 €TTC				
TRB	25 ans				

Points forts	Points faibles
Grande surface disponible	Faible rentabilité
Pas de conflit d'usage	Contrainte sur l'implantation en raison des skydomes
	Investisseur privé nécessaire

^{*}Calculé avec des panneaux produits en France

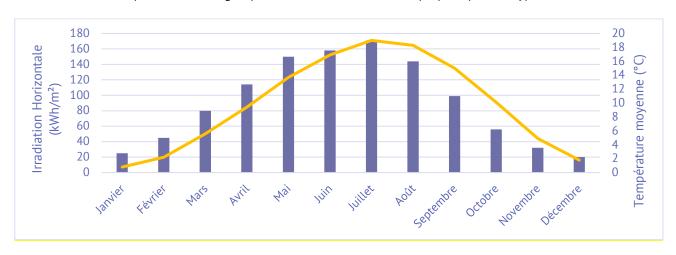
Contexte réglementaire

Le tableau ci-après reprend les différentes procédures concernant la valorisation de l'énergie produite. Il existe également la solution de l'autoconsommation (le kWh produit est substitué au kWh consommé), le surplus d'énergie produit doit être géré au cas par cas.

La procédure en fond vert est préconisée pour le site étudié.

	Guichet ouvert	Procédures de mise en concurrence					
	Obligation d'achat	Appel d'Offres Bâtiment	Appel d'Offres Bâtiment	Appel d'Offres Autoconsommation (suspendu jusqu'à nouvel ordre)	Appel d'Offres Parcs au sol ou ombrière		
Seuils de puissance	< 100 kW	de 100 à 500 kWc	de 500 kWc à 8 MWc	de 100 kWc à 1 MWc	de 500 kWc à 30 MWc		
Dispositif contractuel de la rémunération	Contrat d'achat avec tarif d'achat fixé par l'Etat	d'achat avec prix d'achat prix d'achat prix d'achat prix de complément		Contrat de complément de rémunération avec prix de complément proposé par le candidat	Contrat de complément de rémunération avec prix de complément proposé par le candidat		
Modalités	Selon arrêté tarifaire	Selon cahier des charges		Selon cahier des charges	Selon cahier des charges		

Source: www.photovoltaïque.info

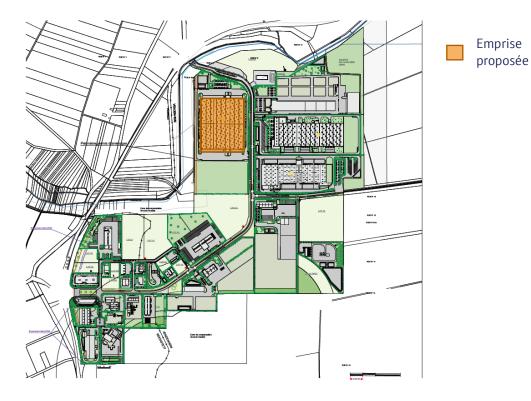


Site LCR - Ecoparc Rhénan

La valorisation de la production énergétique se fera via le tarif d'achat proposé pour ce type d'installation.

Le graphique représente l'irradiation horizontale en kWh/m² à Strasbourg. C'est-à-dire que c'est l'énergie issue du soleil que reçoit une surface de 1m² disposée horizontalement à Strasbourg. En annexe est proposé le graphique de productible à échelle nationale. Il montre clairement que le Grand Est n'est pas la région la plus favorisée en termes d'ensoleillement.

	Rappel données phas	e 2			
Nom du site	Adresse	Territoire			
Eco Parc Rhénan	REICHSTETT	Eurométropole de Stras	bourg		
Superficie (m²)	Source d'identification	Type (bâti : non bâti / park autre)	ing /		
	EMS	bâti			
A	touts	Propriété			
		ETAT			
ZNIEFF 2 Contraintes Milieu Naturel - Reserve biologique naturelle - ZNIEFF 2 - Réserve naturelle -					
Natura 2000	ter d'Alsace à proximité	-			
Zones humides	-				
Contraintes Urbanistiques et pa	trimoniales				
Monument historique	- Zonage PLU		UXB2		
PPRi	- Servitude a	Servitude aéronautique			
	Historique des décision	ıs			



SCOTERS syndicat mixte

Site LCR – Ecoparc Rhénan

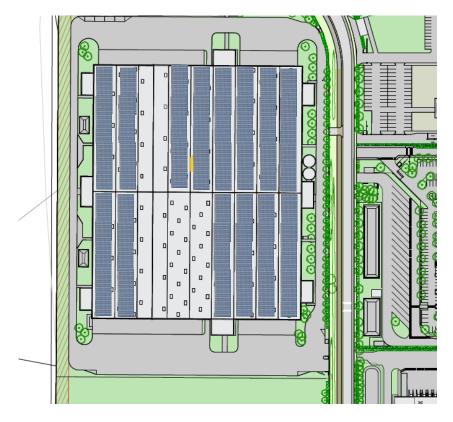
Situation du site

Source: Plan de Recollement - EMS

La zone d'implantation envisagée est en fond orangé et correspond au site de l'entreprise LCR. Plusieurs autres hangars ont été évoqués, mais en raison de l'avancée des projets, seul ce site a été retenu car il fait encore l'objet d'études notamment concernant son emprise au sol.

A ce stade, les détails du bâtiment n'ont pas été communiqués. Ainsi, les éléments spécifiques à la structure, au type de charpente, aux pentes etc. seront supposés aptes à recevoir des panneaux photovoltaïques dans la suite de l'étude. D'autre part, les localisations des ouvertures de toit devront être implantées judicieusement pour permettre un calepinage optimal des panneaux.

Dans la suite du document, il est considéré que la toiture est en shed (toiture en dents de scie) de pente de 15° sur un axe principal Nord-Sud.



Site LCR – Ecoparc Rhénan

Calepinage

Le calepinage est la réalisation d'un dessin visant à déterminer la forme et l'emplacement d'éléments de construction, dans ce cas, des panneaux photovoltaïques.

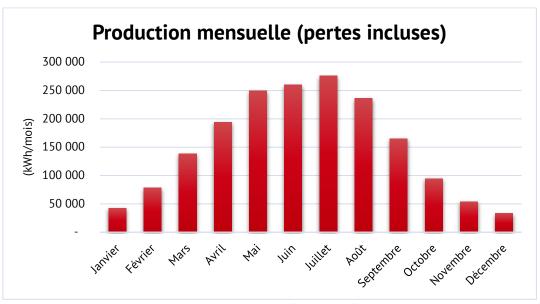
Les hypothèses retenues pour le calepinage sont avec une inclinaison à 15°, azimut 90° et -90°:

- 1 MWc de panneaux orientés Est soit 3634 modules ;
- 1 MWc de panneaux orientés Ouest soit 3634 modules ;

Pour effectuer les calculs, un panneau standard de 250 Wc en Silicium polycristallin est proposé.

A noter qu'il existe des panneaux photovoltaïques fabriqués en Alsace. Dans cette étude, il est pris parti que ce serait un fournisseur pour les différents projets. Cela impacte notamment le chiffrage des éléments.

L'azimut est défini comme l'angle mesuré dans le sens des aiguilles d'une montre entre le point cardinal Sud et la projection sur le plan horizontal local de la droite reliant la terre au soleil. L'angle est mesuré dans le sens des aiguilles d'une montre dans l'hémisphère nord. Usuellement, le Sud est à 0°, l'Est à 90° et l'Ouest à -90°.



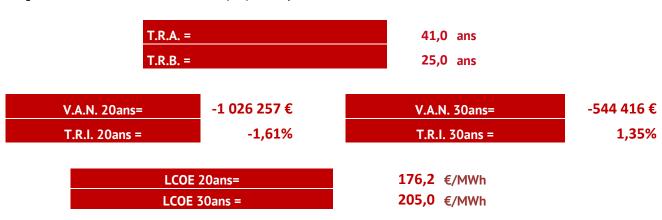
Site LCR - Ecoparc Rhénan

Etude technique

Production mensuelle (Source PV Syst)

Le productible a été calculé à l'aide du logiciel PV Syst . Il prend en compte plusieurs paramètres tels qu'ombrage proche et lointain, azimut, perte de l'installation...

	Irradiation mensuelle horizontale (kWh/m²)	Température moyenne (°C)	Production mensuelle (kWh)		
Janvier	25	0,8	42 593		
Février	45	2,2	78 110		
Mars	80	5,6	138 278 193 997		
Avril	114	9,4			
Mai	150	13,7	249 205		
Juin	158	16,9	259 990		
Juillet	171	19,0	275 676		
Août	144	18,3	235 866		
Septembre	99	15,0	165 030		
Octobre	56	10,1	94 611		
Novembre	32	4,9	53 916		
Décembre	20	1,8	33 196		
Total	1 094	9,9	1 820 469		



Site LCR - Ecoparc Rhénan

Analyse Financière

PREPA	RATION DE CHANTIER	10 500 €
SOLAI	RE PHOTOVOLTAIQUE	1 342 668 €
STRUC	TURE DES OMBRIERES	806 480 €
	TRAVAUX DIVERS	580 000 €
	TOTAL - €HT	2 739 648 €
	TVA - 20%	547 930 €
	TOTAL - €TTC	3 287 578 €

Le coût d'achat de l'électricité a été fixé à 8,6 c€/kWh, tarif moyen des installations lors de la dernière période des AO CRE. En prenant en compte les frais d'exploitation, de maintenance, les diverses taxes ainsi que l'augmentation du coût de l'électricité (3%), l'analyse financière donne :

Il est important de souligner qu'il s'agit d'une étude d'opportunité. Lors d'une étude de faisabilité, le développeur ou le bureau d'étude peuvent améliorer certains paramètres (notamment le ratio de production kWh/kWc/an), permettant ainsi d'améliorer la viabilité économique.

Site LCR – Ecoparc Rhénan

Annexes

Estimation des coûts

Coût d'investissement

Eco Parc Rhénan

ART.	DESIGNATION des OUVRAGES	U	QTE	P.U. ⊠ HT	TOTAL € HT
1	PREPARATION DE CHANTIER				
Gestio	n de chantier (Protections, nettoyage, gestion des déchets compris évacuation, installations diverses, zone de stockage, base vie 2 mois)	Ens	1	2 500,0 €	2 500,00 €
	Etudes d'exécution	Ens	1	5 000,0 €	5 000,00 €
	Dossier des Ouvrages Exécutés	Ens	1	3 000,0 €	3 000,00 €
II	SOLAIRE PHOTOVOLTAIQUE				
	Modules photovoltaïques (7268 x 250Wc)	Wc	1998700	0,50	999 350 €
	Onduleur photovoltaïque	VA	1998700	0,14	279 818 €
	Structure "Support Onduleur"	Ens	7	1 000 €	7 000 €
	Coffret DC	Ens	7	1 000 €	7 000 €
	Câblage DC	ml	7000	4 €	28 000 €
	Chemin de câble	ml	150	30 €	4 500 €
	Coffret AC	Ens	7	1 000 €	7 000 €
	Protection contre le surintensités	Inclus dans Objet "Coffret AC" et "Coffret DC"			
	Câblage AC	Ens	200	35,0 €	7 000,00 €
	Mise à la Terre au bâtiment	Ens	1	3 000,0 €	3 000,00 €
III	STRUCTURES SUR TOITURE				
	Structure métallique	Wc	1998700	0,4 €	799 480,00 €
	Etude structure	Ens	1	7 000,0 €	7 000,00 €
IV	TRAVAUX DIVERS				
	Main d'œuvre	Ens	1	500 000 €	500 000 €
	Démarches administratives	Ens	1	80 000 €	80 000 €

Site LCR – Ecoparc Rhénan

Eléments techniques

Ordre de grandeur

Puissance et énergie

La puissance (mesurée en Kilowatt, kW) est une notion instantanée : c'est ce qu'une centrale peut apporter rapidement au réseau à un instant donné. L'énergie (mesurée en kilowattheures, kWh) se rapporte elle à la durée de production d'une centrale.

Ordres de grandeur

Pour un appartement ou une maison d'environ 120 m², mal isolé, habité par 4 personnes, on estime une consommation moyenne annuelle « de chaleur » d'environ 14 MWh, contre 3,5 MWh pour son équivalent bien isolé.

Pour un ménage de 4 personnes, la consommation électrique annuelle est environ de 2,5 MWh hors chauffage. Elle se décompose par exemple en consommation par exemple : un sèche -linge : 900 kWh, un congélateur : 350 kWh, un lave-linge 1 150 kWh, l'éclairage : 100 kWh, un ensemble téléphone-télévision-ordinateur : 150 kWh...

L'énergie photovoltaïque

L'énergie solaire photovoltaïque transforme le rayonnement solaire en électricité grâce à des cellules photovoltaïques assemblées dans des panneaux, eux-mêmes installés sur des bâtiments ou posés sur des structures ancrées au sol.

L'électricité produite peut être consommée sur place, stockée (dans des batteries par exemple) ou réinjectée dans le réseau de distribution électrique.

1. RESSOURCE

Les technologies photovoltaïques (PV) reposent sur des cellules de silicium qui transforment l'énergie du rayonnement solaire en courant électrique continu. Ces cellules sont assemblées entre elles pour former un module, ou panneau photovoltaïque, l'onduleur se charge de convertir ce courant continu en alternatif. La combinaison de plusieurs panneaux reliés à différents composants électriques (tels qu'onduleurs, boîtier de boîtes de jonction, régulateur, batterie etc.) constitue un générateur photovoltaïque. La durée de vie d'un module est de l'ordre de 25 ans, et un onduleur de 10 ans.

La "puissance-crête" est une donnée normative utilisée pour caractériser les cellules et modules photovoltaïques. Elle correspond à la puissance que peut délivrer une cellule, un module ou un champ sous des conditions optimales et standardisées d'ensoleillement (1000 W/m²) et de température (25°C). On parle ainsi de panneaux solaires de 250 Wc, d'une centrale de 1MWc etc.

Site LCR - Ecoparc Rhénan

Figure 1 : Exemple d'installation photovoltaïque avec injection réseau (Source : Hespul)

Différentes technologies de cellules sont disponibles sur le marché avec des stades différents de maturité technologique :

- Silicium cristallin: les cellules sont constituées de fines plaques de silicium, élément que l'on extrait du sable ou du quartz. On obtient alors du silicium monocristallin (de meilleure qualité mais plus cher à produire) ou du silicium multi-cristallin/polycristallin (moins cher à produire mais offrant des rendements moins élevés). Bien que plus ancienne, cette technologie représente 90 % des parts de marché du fait de sa robustesse et de ses performances. La durée de vie des modules photovoltaïques fabriqués à partir de ces cellules est estimée entre 25 et 30 ans.
- Couches minces : ces cellules sont obtenues en déposant des couches de matériaux semi-conducteurs et photosensibles sur un support en verre, en plastique, en acier, etc. La part de marché pour l'ensemble de ces technologies est d'environ 10 %.
- Cellules organiques : ces modules sont constitués de molécules organiques. Les capteurs solaires se présentent sous forme de films de type photographique, souples, légers et faciles à installer. Cette technologie est en cours de développement.
- Cellules à concentration (technologie dite CPV) : cette technologie utilise des lentilles optiques qui concentrent la lumière sur de petites cellules photovoltaïques à haute performance. Cette technologie est en cours de développement.

SCOTERS syndicat mixte

Site LCR - Ecoparc Rhénan

2. APPLICATIONS

Le solaire photovoltaïque produit de l'électricité, qui peut être consommée sur place (autoconsommation), stockée dans des batteries ou injectée sur le réseau électrique pour d'autres usagers.

3. TECHNOLOGIES

Les générateurs photovoltaïques peuvent être installés de différentes manières : sur bâti ou au sol.

Dans le cas des installations en toiture, deux alternatives se présentent :

- L'intégration au bâti ou la surimposition en toiture, c'est-à-dire que le capteur est posé dans un plan parallèle à la toiture inclinée.
- Disposition sur une toiture terrasse : les panneaux sont posés sur une toiture plane avec un degré d'inclinaison permettant une production maximale.

exemple de panneaux en toiture inclinée (Source Ademe)

exemple de panneaux en toiture terrasse (source CRER)

Dans le cas des installations au sol, se distinguent deux types : les ombrières de parkings et les centrales photovoltaïques.

exemple de centrale photovoltaïque (source SOLON SE Berlin)

Site LCR – Ecoparc Rhénan

Une ombrière de parking est un dispositif spécifique permettant la pose de panneaux solaire sur une structure et proposant un abri pour des véhicules stationnés en dessous.

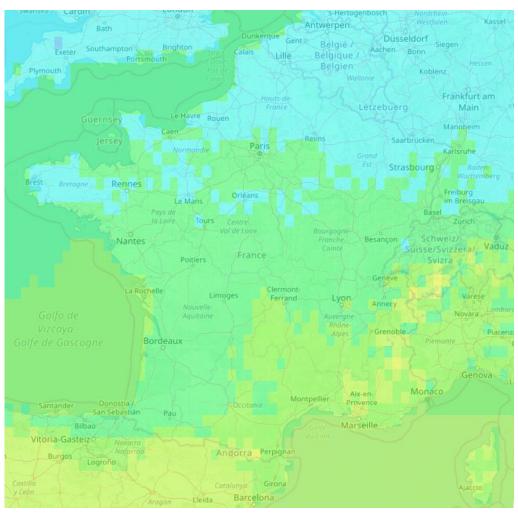
Une centrale photovoltaïque au sol est composée des modules photovoltaïques, des câbles de raccordement, des locaux techniques abritant les onduleurs et du poste de livraison.

Les centrales au sol sont de deux natures ; les installations fixes se distinguant des installations mobiles.

- Les installations fixes: Les modules photovoltaïques sont implantés sur des châssis qui sont orientés au sud selon un angle d'exposition pouvant varier de 25 à 30 ° en fonction de la topographie locale
- Les installations mobiles ou orientables: elles sont équipées d'une motorisation leur permettant de suivre la course du soleil. Elles nécessitent un investissement et un entretien plus importants pour une productivité supérieure.

Les installations solaires photovoltaïques au sol ont aujourd'hui atteint un stade de maturité technique. Leur implantation mobilise environ 2 à 3 ha pour 1 MWc.

4. PRODUCTIBLE


L'Illustration suivante montre le productible en kWh/kWc pour des panneaux solaires à l'échelle de la France. Il s'agit de l'énergie produite annuellement en kWh par 1kWc de panneaux installés plein Sud à 30° sans compter les effets d'ombrage.

Site LCR - Ecoparc Rhénan

- Juin 2018 - Mai 2019 -

Site LCR - Ecoparc Rhénan

Définitions

TRA: Le temps de retour actualisé est le nombre d'année de production de l'installation photovoltaïque pour rembourser l'investissement en tenant compte du coût de l'argent et de la maintenance. Ce temps de retour actualisé doit être inférieur à la durée d'exploitation (ou à la durée garantie durant laquelle l'achat des kWh est assuré) pour que le projet soit rentable.

TRB: Le temps de retour brut est l'investissement initial divisé par la recette annuelle, donc le nombre d'année pour rembourser l'investissement initial. Cette valeur, souvent utilisée car simple à calculer, est un indicateur moins fiable que le TRA sur la rentabilité d'un projet car il ne tient pas compte du taux d'actualisation de l'argent, de la maintenance et de la durée d'exploitation de l'installation PV.

VAN: La valeur actuelle nette est le gain financier en fin d'exploitation de l'installation photovoltaïque. Si la VAN est positive, c'est que le projet est rentable.

TRI: Le taux de rentabilité interne (TRI) est le taux de rendement du capital investi pour qu'à la fin de la durée de l'exploitation, l'investissement soit juste remboursé. Ce taux de rentabilité interne doit au moins être égal taux d'actualisation de l'argent pour que le projet soit à l'équilibre et supérieur ou coût de l'argent pour être profitable.

LCOE: Le prix de revient ou coût global actualisé (CGA) du kWh photovoltaïque est ce que coûte la production d'un kWh en tenant compte de l'investissement (subventions déduites), de la maintenance, du l'actualisation de l'argent et de la durée de vie de l'installation photovoltaïque. Pour que le projet photovoltaïque soit rentable, le tarif d'achat du kWh photovoltaïque doit être supérieur aux prix de revient de ce kWh photovoltaïque.

PVSYST V5.74 20/05/19 Page 1/4

Système couplé au réseau: Paramètres de simulation

Projet : Ecoparc_rhénan

Site géographiqueStrasbourgPaysFranceSituationLatitude48.3°NLongitude7.4°ETemps défini commeTemps légalFus. horaire TU+1Altitude150 m

Albédo 0.20

Données météo : Strasbourg, Synthetic Hourly data

Variante de simulation : New simulation variant

Date de la simulation 20/05/19 à 14h39

Paramètres de simulation

Champ hétérogène, double orientation Proportion du champ #1 50 %

Inclin. champ #1 15° Azimut champ #1 90° Inclin. champ #2 15° Azimut champ #2 -90°

HorizonPas d'horizonOmbrages prochesSans ombrages

Caractéristiques des champs de capteurs (2 type de champs définis)

Module PV Si-mono Modèle VSMS-275-60-A

Fabricant Voltec Solar

Champ#1:Nombre de modules PVEn série23 modulesEn parallèle158 chaînesNombre total de modules PVNbre modules3634Puissance unitaire275 Wc

Puissance globale du champ Nominale (STC) 999 kWc Aux cond. de fonct. 902 kWc (50°C)

Caractéristiques de fonct. du champ (50°C) U mpp 661 V I mpp 1364 A

Champ#2: Nombre de modules PVEn série23 modulesEn parallèle158 chaînesNombre total de modules PVNbre modules3634Puissance unitaire275 Wc

Puissance globale du champ Nominale (STC) 999 kWc Aux cond. de fonct. 902 kWc (50°C)

Caractéristiques de fonct. du champ (50°C) U mpp 661 V I mpp 1364 A

Total Puissance globale champs Nominale (STC) 1999 kWc Total 7268 modules

Surface modules 11872 m² Surface cellule 10612 m²

Champ#1: Onduleur Modèle Ingecon Sun 400TL X320 DCAC Outdoor

Fabricant Ingeteam

Caractéristiques Tension de fonctionnement 540-820 V Puissance unitaire 408 kW AC Batterie d'onduleurs 2 unités Puissance totale 816 kW AC

Champ#2 : Onduleur Modèle Ingecon Sun 460TL X360 DCAC Outdoor

Fabricant Ingeteam

Caractéristiques Tension de fonctionnement 606-820 V Puissance unitaire 459 kW AC Batterie d'onduleurs Nombre d'onduleurs 2 unités Puissance totale 918 kW AC

Facteurs de perte du champ PV

Perte de "mismatch" modules

Fact. de pertes thermiques Uc (const) 20.0 W/m²K Uv (vent) 0.0 W/m²K / m/s

=> Tempér. de fonct. nominale (G=800 W/m², Tamb=20°C, Vent=1m/s.) NOCT 56 °C

Perte ohmique de câblage Champ#1 8.0 mOhm Frac. pertes 1.5 % aux STC

Champ#2 8.0 mOhm Frac. pertes 1.5 % aux STC Global Frac. pertes 1.5 % aux STC

Perte de qualité module Frac. pertes 0.1 %

Frac. pertes 2.0 % au MPP

Effet d'incidence, paramétrisation ASHRAE IAM = 1 - bo (1/cos i - 1) Paramètre bo 0.05

PVSYST V5.74		20/05/19	Page 2/4
,	Système couplé au réseau: Paramètres de simulation (su	ite)	
Besoins de l'util	isateur : Charge illimitée (réseau)		

PVSYST V5.74 20/05/19 Page 3/4

Système couplé au réseau: Résultats principaux

Projet: Ecoparc_rhénan

Variante de simulation : New simulation variant

Principaux paramètres système Type de système

Orientation plan capteutsuble orientation/ champ #1(50 %

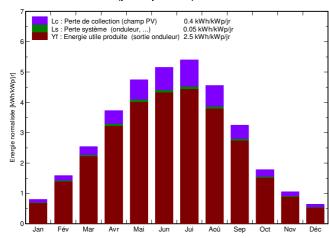
Modules PV Modèle Champ PV Nombre de modules Onduleur Modèle Onduleur Modèle

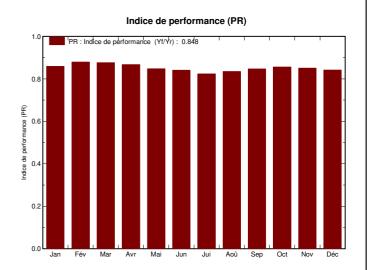
Batterie d'onduleurs Nombre d'unités

Besoins de l'utilisateur Charge illimitée (réseau) Couplé au réseau

inclin.15°, azimut90° inclin.15°, azimut-90° champ #2

VSMS-275-60-A Pnom 275 Wc 7268 Pnom total 1999 kWc Ingecon Sun 400TL X320 D@AonOutelloorkW ac Ingecon Sun 460TL X360 D@AonOut@50rkW ac


Pnom total 1734 kW ac


Principaux résultats de la simulation

Production du système 1820 MWh/an Productible 911 kWh/kWc/an **Energie produite**

Indice de performance (PR) 84.8 %

Productions normalisées (par kWp installé): Puissance nominale 1999 kWc

New simulation variant Bilans et résultats principaux

	GlobHor	T Amb	Globinc	GlobEff	EArray	E_Grid	EffArrR	EffSysR
	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	%	%
Janvier	25.0	0.80	24.8	23.2	43.9	42.6	14.92	14.46
Février	45.0	2.20	44.4	41.9	79.9	78.1	15.15	14.81
Mars	80.0	5.60	78.9	75.2	141.2	138.3	15.08	14.76
Avril	114.0	9.40	111.9	107.3	197.9	194.0	14.90	14.61
Mai	150.0	13.70	147.1	141.7	254.2	249.2	14.55	14.27
Juin	158.0	16.90	154.6	149.1	264.9	260.0	14.43	14.16
Juillet	171.0	19.00	167.5	161.5	281.0	275.7	14.13	13.87
Août	144.0	18.30	141.3	135.9	240.4	235.9	14.33	14.06
Septembre	99.0	15.00	97.4	93.0	168.3	165.0	14.55	14.26
Octobre	56.0	10.10	55.3	52.4	96.7	94.6	14.74	14.42
Novembre	32.0	4.90	31.7	29.7	55.3	53.9	14.70	14.33
Décembre	20.0	1.80	19.7	18.5	34.3	33.2	14.64	14.17
Année	1094.0	9.85	1074.6	1029.4	1858.0	1820.5	14.56	14.27

Légendes: GlobHor Irradiation globale horizontale

T Amb Température ambiante GlobInc Global incident plan capteurs GlobEff Global "effectif", corr. pour IAM et ombrages **EArray** E_Grid EffArrR EffSysR Energie effective sortie champ Energie injectée dans le réseau Effic. Eout champ / surf. brute Effic. Eout système / surf. brute PVSYST V5.74 20/05/19 Page 4/4

Système couplé au réseau: Diagramme des pertes

Projet : Ecoparc_rhénan

Variante de simulation : New simulation variant

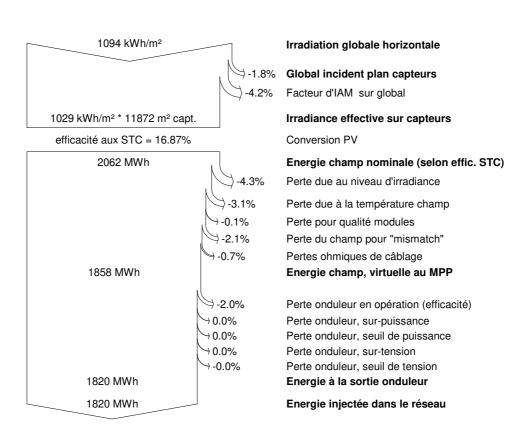
Principaux paramètres système Type de système Couplé au réseau

Orientation plan capteutsuble orientation/ champ #1(50 % inclin.15°, azimut90° champ #2 inclin.15°, azimut-90°

Pnom

Pnom total

275 Wc


1999 kWc

Modules PV Modèle VSMS-275-60-A
Champ PV Nombre de modules 7268
Onduleur Modèle Ingecon Sun 400

Onduleur Modèle Ingecon Sun 400TL X320 D**CAO**nOut**400**kW ac Onduleur Modèle Ingecon Sun 460TL X360 D**CAO**nOut**450**kW ac Batterie d'onduleurs Nombre d'unités 4.0 Pnom total **1734 kW ac**

Besoins de l'utilisateur Charge illimitée (réseau)

Diagramme des pertes sur l'année entière

